职  称:副教授
研究方向:理论物理
办公电话:yugd000@nenu.edu.cn
办公地点:净月量子科学中心607
电子邮件:

个人简历

于国栋,男,东北师范大学物理学院副教授,主要从事凝聚态理论方向的研究工作。曾担任Physical Review Letters, Physical Review B以及Journal of Physics: Condensed Matter等学术期刊的审稿人。 主要研究方向:低维体系电子结构的理论研究。 主持项目: 博士后基金面上项目二等资助 2018(已结题) 国家自然科学基金青年项目 2023.01-2025.12(在研) 学习工作经历: 2006.09-2010.06 吉林大学,物理学,本科 2010.09-2015.06 吉林大学,凝聚态物理,博士(直博) 2015.10-2017.09 比利时鲁汶大学(法语),博士后 2017.11-2021.10 武汉大学,博士后 2018.05-2020.10 荷兰奈梅亨大学,访问学者 2021.11 至 现在 东北师范大学物理学院,副教授

社会兼职

获奖情况 (数据来源:科学技术处、社会科学处)

教学信息

  • 大学物理(二):电磁学和光学 2022年春季学期 (环境学院本科生)
    大学物理(二):电磁学和光学 2023年春季学期 (环境学院本科生)

科研信息

  • 发表文章:
    32. The nearly free electron states and the conductivity limited by electron-phonon scattering of OH-terminated MXene material, a case study of Hf2C(OH)2 Monolayer
        L. Feng, G. Yu*, and Y. Zheng*, Phys. Chem. Chem. Phys. 24, 24219(2022).
    31. Compatibility relationships in van der Waals quasicrystals.
        G. Yu, Y. Wang*, M. I. Katsnelson, H.-Q. Lin, and S. Yuan*, Phys. Rev. B 106, 075121(2022)
    30. Polarization-dependent selection rules and optical spectrum atlas of twisted bilayer graphene quantum dots. 
        Y. Wang*#, G. Yu#, M. Rösner, M. I. Katsnelson, H.-Q. Lin, S. Yuan*, Phys. Rev. X 12, 021055 (2022).
    29. Interlayer hybridization in graphene quasicrystal and other bilayer graphene systems. 
        G. Yu, Y. Wang*, M. I. Katsnelson, H.-Q. Lin, and S. Yuan*, Phys. Rev. B 105, 125403 (2022).
    28. Electronic properties and quasi-particle model of monolayer MoSi2N4. 
        Z. Wang, X. Kuang, G. Yu, P. Zhao, H. Zhong*, S. Yuan*, Phys. Rev. B 104, 155110 (2021).
    27. Structure–Composition–Property Relationships in Antiperovskite Nitrides: Guiding a Rational Alloy Design. 
        H. Zhong, C. Feng, H. Wang, D. Han, G. Yu, W. Xiong, Y. Li, M. Yang, G. Tang, S. Yuan, ACS Appl. Mater. Interfaces 13, 48516 (2021).
    26. Beyond the Single Parabolic Band Model: Providing Insight into the High Thermoelectric Efficiency of Yb14MSb11 (M = Mg, Al). 
        C. J. Perez, M. Wood, F. Ricci, G. Yu, T. Vo, S. K. Bux, G. Hautier, G.-M. Rignanese, G. J. Snyder, S. M. Kauzlarich, Science Advances 7, eabe9439 (2021).
    25. Tunability of multiple ultraflat bands and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenides. 
        Z. Zhan, Y. Zhang, P. Lv, H. Zhong, G. Yu, F. Guinea, J. Á. Silva-Guillén*, and S. Yuan*, Phys. Rev. B 102, 241106(R) (2020).
    24. Electronic structures of 30° twisted double bilayer graphene. 
        G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson, S. Yuan*,  Phys. Rev. B 102, 115123 (2020).
    23. Pressure and electric field dependence of quasicrystalline electronic states in 30° twisted bilayer graphene. 
        G. Yu*, M. I. Katsnelson, S. Yuan*,  Phys. Rev. B 102, 045113 (2020).
    22. Dodecagonal bilayer graphene quasicrystal and its approximants. 
        G. Yu#, Z. Wu#, Z. Zhan, M. I. Katsnelson and S. Yuan*, npj Computational Materials 5, 122 (2019).  
    21. Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p-type transparent conducting materials. 
        V. Ha, G. Yu, F. Ricci, D. Dahliah, M. J. van Setten, M. Giantomassi, G.-M. Rignanese, and G. Hautier*, Phys. Rev. Mater. 3, 034601 (2019). 
    20. Origins of ultralow thermal conductivity in 1-2-1-4 quaternary selenides. 
        J. Kuo, U. Aydemir, J.-H. Pöhls, F. Zhou, G. Yu, A. Faghaninia, F. Ricci, M. A. White, G.-M. Rignanese, G. Hautier, A. Jaing and G. J. Snyder*, Journal of Materials Chemistry A 7, 2589 (2019). 
    19. Interplay between in-plane and flexural phonons in electronic transport of two-dimensional semiconductors. 
        A. N. Rudenko*, A. V. Lugovskoi, A. Mauri, G. Yu, S. Yuan*, and M. I. Katsnelson, Phys. Rev. B 100, 075417 (2019).
    18. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. 
        D. Broberg, B. Medasani, N. E. R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier*,  Computer Physics Communications 226, 165 (2018). 
    17. Electronic and mechanical properties of few-layer borophene. 
        H. Zhong, K. Huang, G. Yu, and S. Yuan*, Phys. Rev. B  98, 054104 (2018).
    16. Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons. 
        W. Zhou, G. Yu, A. Rudenko and S. Yuan*, Phys. Rev. Materials 2, 114001 (2018). 
    15. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions. 
        A. Faghaninia, G. Yu, U. Aydemir, M. Wood, W. Chen, G-M Rignanese, G J Snyder, G. Hautier, A Jain*, Phys. Chem. Chem. Phys. 19, 6743 (2017). 
    14. Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3-xSex (x=0, 0.05, and 0.1)
        S. Maier, S. Ohno, G. Yu, S. D. Kang, T. C. Chasapis, V. A. Ha, S. A. Miller, D. Berthebaud, M. G. Kanatzidis, G. M. Rignanese, G. Hautier,
        G. J. Snyder, F. Gascoin, Chemistry of Materials, 30, 174 (2017)
    13. Two dimensional Kagome phosphorus and its edge magnetism: an ab-initio study. 
         G. Yu, L. Jiang, and Y. Zheng*, J. Phys.: Condens. Matter 27, 255006 (2015). 
    12. First-principles study on 3d transition metal atom adsorption onto graphene: the role of the extended line defect. 
         G. Yu, M. Zhu, and Y. Zheng*, J. Mater. Chem. C 2, 9767 (2014). 
    11. Surface magnetism of the carbon foam: An ab-initio theoretical study. 
         G. Yu, L. Jiang, and Y. Zheng*, Appl. Phys. Lett. 105, 061601 (2014). 
    10. Electronic properties of four typical zigzag-edged graphyne nanoribbons. 
         G. Yu, Z. Liu, W. Gao, and Y. Zheng*, J. Phys.: Condens. Matter 25, 285502 (2013). 
    9. Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons. 
         G. Yu, X. Lv, L. Jiang, W. Gao, and Y. Zheng*, J. Phys. D: Appl. Phys. 46, 375303 	(2013). 
    8. Line-defect–induced Fano interference in an armchair graphene nanoribbon. 
         W. Gong*, X. Sui, L. Zhu, G. Yu, X. Chen, EPL (Europhysics Letters) 103, 18003 (2013). 
    7. A graphene quantum dot realized by an armchair graphene nanoribbon with line defect.  
        X. Sui, Z. Li, W. Gong*, G. Yu, X. Chen, physica status solidi (RRL)-Rapid Research Letters 7, 579 (2013). 
    6. A valley-filtering switch based on the Stone-Wales defect array in carbon nanotube.  
        X. Lü, G. Yu, H. Yao, Y. Zheng*, EPL (Europhysics Letters) 103, 47008 (2013). 
    5. Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect. 
        W. Gong*, X. Sui, Y. Wang, G. Yu, X. Chen, Nanoscale research letters 8, 330 (2013). 
    4. Suppression of edge magnetism in a titanium-embedded zigzag graphene nanoribbon.
        G. Yu, X. Lv, Y. Zheng*, and W. Tian, J. Appl. Phys. 111, 033707 (2012). 
    3. A simple tight-binding model for typical graphyne structures. 
        Z. Liu, G. Yu, H. Yao, L. Liu, L. Jiang, and Y. Zheng*, New J. Phys. 14, 113007 (2012). 
    2. RKKY interaction in AB-stacked multilayer graphene. 
        L. Jiang, X. Lü, W. Gao, G. Yu, Z. Liu, Y. Zheng*, J. Phys.: Condens. Matter 24, 206003 (2012). 
    1. Dirac-equation description of the electronic states of graphene with a line defect: Wave-function connection condition. 
        L. Jiang, G. Yu, W. Gao, Z. Liu, Y. Zheng*, Phys. Rev. B 86, 65433 (2012).
信息维护