王莹琳
东北师范大学物理学院
个人简历
王莹琳,理学博士,教授,博士生导师。主要从事新型太阳能电池方面的研究。在近红外量子点太阳能电池、透明光伏窗、变色智能窗的材料制备、界面修饰和载流子相关过程调控等方面开展了一系列有特色的研究工作。相关工作发表在ACS Energy Lett., Adv. Funct. Mater., Appl. Phys. Lett., Chem. Commun., ACS Applied Energy Materials等国际著名杂志上。累积发表SCI论文40余篇,申请/授权专利10余项。主持国家自然科学基金面上项目/青年项目,吉林省科技厅/教育厅科研项目等多个课题。 教育经历 1. 2006年09月至2011年06月,就读于吉林大学化学学院高分子化学与物理专业, 获理学博士学位位。 2. 2002年09月至2006年06月,就读于吉林大学化学学院高分子材料与工程专业, 获工学学士学位。 工作经历 1. 2014年06月至今,东北师范大学物理学院 2. 2011年12月至2014年06月,中国科学院长春应用化学研究所,博士后,合作导师:王鹏 研究员 主持科研项目情况: 1. 基于多功能聚合物凝胶电解质的一体式染料敏化光伏变色窗,吉林省科技厅吉林省自然科学基金(面上),2023.1-2025.12 2. 单原子催化对电极的设计合成及其在透明染料敏化太阳能电池中的应用,吉林省教育厅科学技术研究项目,2021.1-2022.12 3. 基于分子掺杂策略的宽光谱全量子点异质结太阳能电池研究,国家自然科学基金委员会面上项目,2020.1-2024.12 4. 结构规整的ZnO纳米线阵列可控制备及其在柔性量子点太阳能电池中的应用研究,吉林省科技厅青年科研基金,2018.01-2020.12 5. 离子液体辅助制备高质量钙钛矿薄膜及其光伏性能研究,国家自然科学基金青年项目,2017.1-2019.12 6. 染料敏化太阳电池中的界面微结构与动力学,校内青年基金,2015.01-2016.10 发表论文情况(第一作者和通讯作者): 1. P-Type PbS Quantum Dot Solar Ink via Hydrogen-Bonding Modulated Solvation for High-Efficiency Photovoltaics. Adv. Funct. Mater. 2024, 2315365 2. High-Voltage Quasi-Solid-State Dye-Sensitized Solar Cells Based on Copper Redox Shuttles. Solar RRL, 2023, 7, 2300464. 3. Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics. App. Phy. Lett. 2023, 122,123904-1-6. 4. Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics. Adv. Sci. 2022, 10, 2204655-1-8. 5. Ultra-Thin SnOx Buffer Layer Enables High-Efficiency Quantum Junction Photovoltaics. Adv. Sci. 2022, 10, 2204725-1-8. 6. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells. ACS Appl. Mater. Interf. 2022,14,14274. 7. High-performance electron-transport-layer-free quantum junction solar cells with improved efficiency exceeding 10%, ACS Energy Lett. 2021, 6, 493. 8. Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells, Sol. Energy, 2021, 214, 599. 9. Strong metal–support interactions enable highly transparent Pt–Mo2C counter electrodes of bifacial dye-sensitized solar cells, Chem. Commun., 2020, 56, 10046. 10. CuSx hole transport layer for PbS quantum dot solar cell, Sol. Energy, 2020, 209, 118. 11. Noncorrosive necking treatment of the mesoporous BaSnO3 photoanode for quantum dot-sensitized solar cells, Sol. Energy, 2020, 208, 527. 12. Passivation via atomic layer deposition Al2O3 for the performance enhancement of quantum dot photovoltaics, Sol. Energy Mater. Solar Cells, 2020, 209, 110479. 13. Ultrasonic spray pyrolysis-assisted preparation of CoS for stable, uniform and efficient counter electrode in dye-sensitized solar cells, Sol. Energy, 2019, 189, 389. 14. Defect passivation of low-pemperature processed ZnO electron transport layer with polyethylenimine for PbS quantum dot photovoltaics, ACS Applied Energy Materials, 2019, 2, 1695. 15. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells, Phys. Chem. Chem. Phys.,2019, 21, 3970. 16. Ionic Liquid-Assisted Improvements in the Thermal Stability of CH3NH3PbI3 Perovskite Photovoltaics, Phys. Status Solidi RRL 2018, 12, 1800130. 17. Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells, Sci. Rep. 2018, 8, 8714. 18. Global Control of CH3NH3PbI3 Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics, J. Phys. Chem. C 2018, 122, 10699. 19. Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer, Chin. Phys. B 2018, 27, 018503. 20. Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer, Appl. Phys. Lett. 2017, 110, 163902. 21. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells, Appl. Surf. Sci., 2017, 402, 86. 22. Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells, J. Phys. Chem. C 2017, 121, 12524. 23. Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer, Sol. Energy Mater. Solar Cells, 2017, 169: 264. 24. Increased open-circuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solution-deposited Mg(OH)2 interlayer, Phys. Status Solidi RRL, 2016, 10, 745. 25. TiO2 Nanoparticle-Based Electron Transport Layer With Improved Wettability for Efficient Planar-Heterojunction Perovskite Solar Cell, Journal of Energy Chemistry, 2015, 24, 717. 26. Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer , Appl. Phys. Lett., 2017, 110, 163902. 27. Influence of a Solution-Deposited Rutile Layer on the Morphology of TiO2 Nanorod Arrays and the Performance of Nanorod-Based Dye-Sensitized Solar Cells, RSC Adv., 2016, 6, 10450-10455. 28. Altering the Self-Organization of Dyes on Titania with Dyeing Solvents to Tune the Charge-Transfer Dynamics of Sensitized Solar Cells, ChemPhysChem, 2014, 15, 1037. 29. Correlating Multichannel Charge Transfer Dynamics with Tilt Angles of Organic Donor–Acceptor Dyes Anchored on Titania, J. Phys. Chem. C, 2014, 118, 16441. 30. Engineering of Push-Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells, Adv. Funct. Mater., 2013, 23, 1846. 31. Synthesis and Vesicular Self-Assembly of a Novel Asymmetric Cationic and Ethoxylated Amphiphile, Colloid Polym. Sci., 2013, 292, 243. 32. Self-Assembly and Alterable Relaxivity of an Organic Cation-Encapsulated Gadolinium-Containing Polyoxometalate, Dalton Trans., 2012, 41. 10052. 33. Mn12 Single-Molecule Magnet Aggregates as Magnetic Resonance Imaging Contrast Agents, Chem. Commun., 2011, 47, 3541。 34. Organic-Inorganic Hybrid Supramolecular Gels of Surfactant-Encapsulated Polyoxometalates, Langmuir, 2009, 25, 13194. ……
材料光化学 分析化学 近代物理实验 非线性物理 半导体光电化学
主持科研项目情况: 1. 单原子催化对电极的设计合成及其在透明染料敏化太阳能电池中的应用,吉林省教育厅科学技术研究项目,2021-1-2022.12 2. 基于分子掺杂策略的宽光谱全量子点异质结太阳能电池研究,国家自然科学基金委员会面上项目,2020.1-2024.12 3. 结构规整的ZnO纳米线阵列可控制备及其在柔性量子点太阳能电池中的应用研究,吉林省科技厅青年科研基金,2018.01-2020.12 4. 离子液体辅助制备高质量钙钛矿薄膜及其光伏性能研究,国家自然科学基金青年项目,2017.1-2019.12 5. 染料敏化太阳电池中的界面微结构与动力学,校内青年基金,2015.01-2016.10 发表论文情况(第一作者和通讯作者): 1. High-performance electron-transport-layer-free quantum junction solar cells with improved efficiency exceeding 10%, ACS Energy Lett. 2021, 6, 493. 2. Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells, Sol. Energy, 2021, 214, 599. 3. Strong metal–support interactions enable highly transparent Pt–Mo2C counter electrodes of bifacial dye-sensitized solar cells, Chem. Commun., 2020, 56, 10046. 4. CuSx hole transport layer for PbS quantum dot solar cell, Sol. Energy, 2020, 209, 118. 5. Noncorrosive necking treatment of the mesoporous BaSnO3 photoanode for quantum dot-sensitized solar cells, Sol. Energy, 2020, 208, 527. 6. Passivation via atomic layer deposition Al2O3 for the performance enhancement of quantum dot photovoltaics, Sol. Energy Mater. Solar Cells, 2020, 209, 110479. 7. Ultrasonic spray pyrolysis-assisted preparation of CoS for stable, uniform and efficient counter electrode in dye-sensitized solar cells, Sol. Energy, 2019, 189, 389. 8. Defect passivation of low-pemperature processed ZnO electron transport layer with polyethylenimine for PbS quantum dot photovoltaics, ACS Applied Energy Materials, 2019, 2, 1695. 9. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells, Phys. Chem. Chem. Phys.,2019, 21, 3970. 10. Ionic Liquid-Assisted Improvements in the Thermal Stability of CH3NH3PbI3 Perovskite Photovoltaics, Phys. Status Solidi RRL 2018, 12, 1800130. 11. Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells, Sci. Rep. 2018, 8, 8714. 12. Global Control of CH3NH3PbI3 Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics, J. Phys. Chem. C 2018, 122, 10699. 13. Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer, Chin. Phys. B 2018, 27, 018503. 14. Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer, Appl. Phys. Lett. 2017, 110, 163902. 15. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells, Appl. Surf. Sci., 2017, 402, 86. 16. Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells, J. Phys. Chem. C 2017, 121, 12524. 17. Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer, Sol. Energy Mater. Solar Cells, 2017, 169: 264. 18. Increased open-circuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solution-deposited Mg(OH)2 interlayer, Phys. Status Solidi RRL, 2016, 10, 745. 19. TiO2 Nanoparticle-Based Electron Transport Layer With Improved Wettability for Efficient Planar-Heterojunction Perovskite Solar Cell, Journal of Energy Chemistry, 2015, 24, 717. 20. Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer , Appl. Phys. Lett., 2017, 110, 163902. 21. Influence of a Solution-Deposited Rutile Layer on the Morphology of TiO2 Nanorod Arrays and the Performance of Nanorod-Based Dye-Sensitized Solar Cells, RSC Adv., 2016, 6, 10450-10455. 22. Altering the Self-Organization of Dyes on Titania with Dyeing Solvents to Tune the Charge-Transfer Dynamics of Sensitized Solar Cells, ChemPhysChem, 2014, 15, 1037. 23. Correlating Multichannel Charge Transfer Dynamics with Tilt Angles of Organic Donor–Acceptor Dyes Anchored on Titania, J. Phys. Chem. C, 2014, 118, 16441. 24. Engineering of Push-Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells, Adv. Funct. Mater., 2013, 23, 1846. 25. Synthesis and Vesicular Self-Assembly of a Novel Asymmetric Cationic and Ethoxylated Amphiphile, Colloid Polym. Sci., 2013, 292, 243. 26. Self-Assembly and Alterable Relaxivity of an Organic Cation-Encapsulated Gadolinium-Containing Polyoxometalate, Dalton Trans., 2012, 41. 10052. 27. Mn12 Single-Molecule Magnet Aggregates as Magnetic Resonance Imaging Contrast Agents, Chem. Commun., 2011, 47, 3541. 28. Organic-Inorganic Hybrid Supramolecular Gels of Surfactant-Encapsulated Polyoxometalates, Langmuir, 2009, 25, 13194. ……